Math + Fun !
Home  ::   About Us  ::   Tutor in Your Home  ::   Tutoring Center  ::   SUMMER CAMP  ::   Advertise With Us  ::   College Counseling  ::   Contact Us
Our online tests allow your kids to test their math skills. We make sure that your kids are having fun while studying by combining testing and practice sessions with cleverly designed math games.
Math is Fun
This site is an online mathematics and science school
where you can study without leaving your home (online education).
"Do not worry about your difficulties in mathematics, I assure you that mine are greater". Einstein, Albert (1879-1955)
Login  ::   Sign Up - FREE  ::   Refer a Friend
  School of Logical Thinking
  Tests Examples - Demo
  Elementary Mathematics
  High School Placement
  Placement College Test
  ACT
  SAT
  Flash Games
  ACT
  ACT Assessment
  Test Description
  English Test
  Mathematics Test
  Reading Test
  Science Test
  Writing Test
  SAT
  Early Mathematics
  Study Guide
  Arithmetic
  Algebra
  Geometry
  Trigonometry
Theorems, axioms, definitions
Proof – a reasoning, determining some property.

Theorem – a statement, determining some property and requiring a proof. Theorems are called also as lemmas, properties, consequences, rules, criteria, propositions, statements. Proving a theorem, we are based on the earlier determined properties; some of them are also theorems. But some properties are considered in geometry as main ones and are adopted without a proof.

Axiom – a statement, determining some property and adopted without a proof. Axioms have been arisen by experience and the experience checks if they are true in totality. It is possible to build a set of axioms by different ways. But it is important that the adopted set of axioms would be sufficient to prove all other geometrical properties and minimal. Changing one axiom in this set by another we must prove the replaced axiom, because now it is not an axiom, but a theorem.

Initial notions. There are some notions in geometry ( and in mathematics in general ), to which it is impossible to give some sensible definition. We adopt them as initial notions. The meaning of these notions can be ascertained only by experience. So, the notions of a point and a straight line are initial. Basing on initial notions we can give definitions to all other notions.

View My Stats
Math Plus Fun